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Abstract: A detailed quantum chemical analysis of the underlying principles of hyperfine coupling in 3d
transition metal complexes has been carried out. The explicit evaluation of one- and two-electron integrals for
some atomic systems has been used to understand the spin polarization of the core shells. While spin polarization
enhances the exchange interaction of the 2s and 2p shells with the singly occupied orbitals, the opposite spin
polarization of the 3s and 3p shells arises from the required orthogonality to the 2s and 2p shells, respectively.
Core-shell spin polarization in molecules is found to be proportional to the spin population in the valence 3d
orbitals but to depend little on other details of bonding. In contrast, the spin polarization of the valence shell
depends crucially on the overlap between the singly occupied and certain doubly occupied valence orbitals.
Large overlap leads to pronounced spin polarization of these orbitals and, among other things, likely to spin
contamination when using UHF wave functions or hybrid density functionals. The role of core- and valence-
shell spin polarization for dipolar hyperfine couplings in transition metal complexes is discussed. It is
demonstrated that great care should be exercised in deriving spin populations or even orbital compositions
from dipolar couplings alone.

1. Introduction

The early history of EPR spectroscopy is closely connected
to the study of transition metal complexes.1-8 Already during
the 1950s, the concept of spin polarization was used in the
discussion of the hyperfine coupling constants (HFCCs) to
transition metal nuclei (cf. section 2). Transition metal systems
have thus been adequately represented in early, qualitative
theoretical studies of EPR hyperfine couplings. In contrast,
modern applications of quantum chemical methods to calculate
hyperfine couplings more quantitatively have largely concen-
trated on organic radicals,9,10 due to the various practical
difficulties presented by the more complicated transition metal
systems.11

We recently reported a systematic study,11 in which various
density functional theory (DFT) and coupled cluster approaches
were critically compared in calculations of hyperfine coupling

tensors for a representative set of 21 3d transition metal
complexes. Complexes with significant metal 4s orbital con-
tributions to the singly occupied molecular orbital(s) (SOMO)
may be treated adequately with essentially any of the state-of-
the-art density functionals. In contrast, it is much more difficult
to reproduce experimentally derived HFC tensors in systems
in which the spin density at the metal arises largely from spin
polarization. Gradient-corrected functionals tend to underesti-
mate the important spin polarization of the 2s and 3s core
orbitals. While admixture of exact exchange in “hybrid func-
tionals” helps to enhance the core-shell spin polarization in some
cases, the related spin contamination may deteriorate signifi-
cantly the quality of the results in other systems. Overall, no
functional was found to perform satisfactorily for all systems,
and for some systems, none of the functionals studied was
acceptable.11 The general quantitative study of HFC tensors for
transition metal systems remains thus a challenge to quantum
chemistry.

A better understanding of the detailed relation between
electronic structure and hyperfine couplings should aid in
looking for improved approaches for their calculation. Apart
from the validation of existing methods, the detailed study of
21 complexes11 has provided us with considerable qualitative
insight into the mechanisms of spin polarization in transition
metal systems. As expected, the underlying interactions can be
much more variable than those in organic radicals. For example,
not only s-type but also p- and d-type metal orbitals may be
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involved, and both core and valence shells of the transition metal
may be polarized significantly. The present work concentrates
on these more qualitative aspects of hyperfine coupling in
transition metal compounds and attempts to provide a detailed
understanding of the different spin polarization mechanisms.
Our interpretations are based on the molecular DFT calculations
of ref 11 but will be augmented by detailed UHF and ROHF
analyses of the relevant exchange, Coulomb, and one-electron
integrals for some atomic systems. The geometrical and
electronic structures of the molecular complexes studied, as well
as the relevant available experimental data, have already been
discussed.11 Therefore, with the exception of few systems that
will be discussed in more detail, the reader is referred to ref 11
for further information.

2. The Spin Polarization Model: Previous Work

The general theoretical background of EPR hyperfine cou-
pling is documented in many textbooks.1-8 The isotropic
hyperfine coupling is directly proportional to the spin density
at the point of the corresponding nucleus (FN

R-â, in the following
abbreviated asFN). In traditional interpretations,FN is frequently
approximated by the density of the singly occupied orbital(s).
However, for the majority of systems studied by EPR spec-
troscopy, this simple approach is not sufficient. The unpaired
electron, by virtue of its different interactions with electrons of
different spin, spin-polarizes the electron distribution in the
closed shells. This process can add significant spin density at
the position of the nuclei. The inadequacy of the spin-restricted
theory of the hyperfine interaction has been noted since 1933
for various main-group atoms.12,13 In the 1950s, the spin
polarization model turned out to be very important for the early
qualitative interpretation of EPR spectra for the transition metal
ions. In many of these, the unpaired electrons occupy metal
d-type orbitals. Although these orbitals have a node at the
nucleus, substantial isotropic hyperfine splittings from metal
nuclei were observed. Abragam et al.14 suggested that the
isotropic hyperfine splitting in Mn2+ resulted from the spin
polarization of the outermost occupied core shell (3s in the case
of 3d metal ions).

Later, Watson and Freeman15 showed by UHF calculations
for several 3d ions that the polarized 2s shell contributes even
more to the hyperfine coupling than the outermost 3s shell, but
with the opposite (negative) sign.16 Polarization of the 1s orbital
provided also a negative, albeit very small, spin density at the
nucleus. It was concluded that in the 1s and 2s shells, which
exhibit radial density maximums at much smaller radii than the
3d orbital (cf. Figure 1), theR-spin electrons are “attracted”
outward, leaving a region of negative spin density near the
nucleus17 (similar arguments have been used to describe the
core polarization in 4d metal complexes18). The usual argument
given is that exchange reduces the electron repulsion between
2sR and the 3dR SOMO and thus allows these electrons

to get closer. This would correspond to an “effective attraction”
of like-spin electrons. However, what happens with the 3s
orbital? All of its radial maximums are also located closer to
the nucleus than the 3d radial maximum (cf. Figure 1).
Nevertheless, the 3s shell is polarized in the direction opposite
from the 1s and 2s orbitals, as if the 3sR orbital were “repelled”1

from the 3d-type SOMO. Watson and Freeman interpreted this
as a result of the large overlap between 3s and 3d shells, leading
to “competing tendencies” in the spin polarization.15 We will
show below that the requirement of orthogonality between 2s
and 3s shells is responsible for these seemingly paradoxical
observations.

In main-group chemistry, spin polarization dominates the
hyperfine couplings for some 2p atoms and ions, for some small
π-radicals (e.g., NO, CO+, H2O+), and for the larger class of
organic planarπ-radicals. In these cases, the spin polarization
of the 1s and 2s orbitals is known to transfer spin density to
the nuclei. Just as for transition metal ions, spin polarization of
the valence orbitals contributes with a positive sign toFN, spin
polarization of the core (1s) orbitals with a negative sign.19,20

Unlike for transition metals, the positive outer-shell contributions
dominate, providing an overall positiveFN.21 The traditional
interpretation of these observations is analogous to the model
of Watson and Freeman. TheR-component of the 1s orbital is
attracted outward, leaving negative spin density at the nucleus.
The 2sR orbital, which has its outermost maximum at slightly
larger radius than 2p (Figure 2), is attracted inward and thus
provides moreR-spin density at the nucleus. This “exchange
attraction” of electrons with the same spin is often viewed as a
manifestation of Hund’s rule of maximum multiplicity.2,4

In the past, the concept of spin polarization has been used
exclusively to rationalize isotropic hyperfine couplings. How-
ever, recent theoretical work shows that dipolar hyperfine
coupling in transition metal systems may also be influenced
significantly by spin polarization.11,22 In 3d complexes, large
contributions to the metal dipolar coupling may come from the
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Figure 1. ROHF radial distribution functions [Rnl(r)]2r2 for Mn2+.
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spin-polarized 2p and 3p orbitals. This viewpoint will be
strengthened and extended to valence-shell contributions by the
present work. Note that, for magnetic nuclei in an electronic
environment of axial symmetry (i.e., those located on an at least
3-fold symmetry axis), as is the case for all transition metal
nuclei studied here, the dipolar coupling tensor may be brought
to the form (-Adip, -Adip, 2Adip), whereAdip is the so-called
dipolar hyperfine coupling constant.

3. Computational and Methodological Details

Calculations and MO Analyses of HFCCs. In the following
discussion, we will neglect (spin-orbit or scalar) relativistic
corrections to the HFCCs (which have been estimated in ref
11). The selection of experimental data for most of the systems
used here, and the conversion between different representations
of HFCCs, have been summarized in our previous work.11 The
computed and experimental molecular structures used are also
those described in ref 11. We will concentrate on all-electron
unrestricted Kohn-Sham calculations, mainly on results ob-
tained with the gradient-corrected BP8623 functional. This “pure”
generalized gradient approximation has the advantage that spin

contamination is typically very small.11 Calculations and
analyses of isotropic hyperfine coupling constants (at the
Hartree-Fock and DFT level) were done with the Gaussian94
program.24 Applying the CUBE program option, the values of
the individual orbitals at the transition metal nuclei have been
determined and they were used for the analysis of the contribu-
tions toFN. DFT calculations of the dipolar hyperfine coupling
constants have additionally been carried out with a modified
version of the deMon-EPR code,10,25 where a routine for the
analysis of the orbital contributions toAdip has been imple-
mented.

The medium-sized (15s11p6d)/[9s7p4d] metal basis sets
constructed in ref 11 (based on the work of Scha¨fer et al.26)
were used together with basis sets BIII of Kutzelnigg et al. (also
known as IGLO-III27) for main-group atoms. In the Gaussian94
DFT calculations, the default integration grids (int) finegrid
option24) of the program have been used. In deMon calculations,
additional auxiliary basis sets (5,5;5,5) for the metal and (5,2;5,2)
for the ligand have been used to fit the density and the exchange-
correlation potential (in this case, an extra iteration without fit
of the potential and with extended grid was carried out after
SCF convergence). For the numerical integration in deMon, we
have employed a nonrandom FINE angular grid with 128 radial
shells.10,28

Hartree-Fock Analysis of One- and Two-Electron Inte-
grals. The total energy corresponding to a Hartree-Fock wave
function may be written as29

with R andâ denoting spin.
The one-electron term

represents the average kinetic and nuclear-attraction energy of
an electron described by the orbitalψi(r1); the two-electron
Coulomb integral

expresses the classical Coulomb repulsion between the charge
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Figure 2. ROHF radial distribution functions [Rnl(r)]2r2, and differences
between UHF and ROHF radial distributions in4N. (a) 1s (ROHF radial
distribution scaled by1/30). (b) 2s (ROHF radial distribution scaled by
1/8). For comparison, the ROHF radial distribution function of the 2p
SOMOs (scaled by1/8) is also plotted (cf. discussion in section 5).
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clouds|ψi(r1)|2 and|ψj(r2)|2; the two-electron exchange integral

represents the exchange correlation of the two electrons (r i

denotes the coordinates of electroni).30

At the unrestricted Hartree-Fock (UHF) level of theory, the
spatial parts of theψi

R and ψi
â orbitals are allowed to differ,

while at the restricted-open-shell Hartree-Fock (ROHF) level
they are required to be identical for everyi e Nâ. In the
following, we will discuss also the overlap integral

UHF and ROHF wave functions have been compared in terms
of energies and spin density distributions for a number of
spherical 3d5 cations (Cr+, Mn2+, Fe3+), and for the nitrogen
atom, using the Gaussian94 code, and basis sets as described
above. Using the CUBE option, the radial wave functions have
been extracted. Applying standard methods of two-electron
integral calculations for atomic systems,31 the values of Coulomb
and exchange integrals, nuclear attraction integrals, and overlap
between radial wave functions (cf. below) have been determined.
For the numerical calculation of the Slater-Condon parameters,
a radial grid of 10-3 au has been employed over a radius of 10
au from the nucleus. Summation over all electrons and pairs of
electrons gives the total nuclear attraction energy and electron
repulsion energy (cf. eq 1). The total kinetic energy has been
extracted from the Gaussian94 output.

Below we refer to the sum of all Coulomb integrals from eq
1 as the total Coulomb energy (EC) and to the sum of all
exchange integrals from eq 1 as the total (negative) exchange
energy (EX). Note that the summations in eq 1 are not restricted
to pairs of different spin-orbitals. Therefore, the (unphysical)
electrostatic interaction of an electron with itself is accounted
for in the Coulomb part and again subtracted in the exchange
part (ref 32 p 180). This allows a unique orbital breakdown of
the total electron repulsion energy into exchange and Coulomb
parts.33 The Coulomb part may be interpreted as a classical
electrostatical energy of a charge cloud of densityF(r), whereas
the exchange part includes all nonclassical effects, (ref 32, pp
34 and 39).

4. Analysis of Contributions to GN

Table 1 gives a breakdown of the DFT results for the spin
density at the metal nucleus into MO contributions in a series
of manganese complexes (and in three atomic systems). Table

(30) In this work, the notation for one- and two-electron integrals pertains
to integration over the spatial parts of the corresponding spin-orbitals only.

(31) Weissbluth, M.Atoms and Molecules; Academic Press: New York,
1980.

(32) Parr, R. G.; Yang, W.Density-functional theory of atoms and
molecules; Oxford University Press: New York, 1989.

(33) When self-interaction is not accounted for, the decomposition of
electron repulsion energy into Coulomb and exchange parts may be arbitrary.
For example, for a p shell fully occupied with six electrons, both the total
Coulomb and the total exchange energy depend on the orbital basis (angular
momentum eigenfunctions or real functions). The reason is that〈pxpy|pxpy〉
) 〈pxpz|pxpz〉 ) 〈pypz|pypz〉 ) 〈p1p0|p1p0〉 ) 〈p-1p0|p-1p0〉 * 〈p-1p1|p-1p1〉.
An analogous relation holds for the corresponding exchange integrals.

Table 1. Spin Densities at the Metal Nuclei (au) for a Series of Manganese Complexesa

contributionsb

core

molecule 1s 2s 3s VS SOMO total expc 3s/2s
2[Mn(CO)5] 0.00 -0.18 0.09 0.04 0.06 0.00 0.00...0.01 -0.50
2MnO3 0.01 -0.33 0.18 -0.58 2.54 1.82 1.46 -0.55
2[Mn(CN)4N]- 0.00 -0.39 0.20 0.04 0.00 -0.15 -0.25 -0.51
2[Mn(CN)5NO]2- -0.01 -0.50 0.24 0.13 0.00 -0.13 -0.20 -0.48
6MnO 0.01 -1.40 0.64 -0.43 3.56 2.39 2.17 -0.46
6[Mn(CN)4]2- -0.03 -1.60 0.71 0.46 0.00 -0.45 -0.60 -0.44
6MnF2 0.00 -1.62 0.72 -0.22 2.45 1.33 0. 47...0.61 -0.44
7MnH 0.01 -1.69 0.72 -0.84 3.86 2.07 1.52 -0.43
7MnF 0.01 -1.70 0.74 -0.12 3.68 2.61 2.40 -0.44
6Mn -0.01 -1.78 0.78 0.93 0.00 -0.07 -0.35d -0.44
7Mn+ 0.04 -1.79 0.76 0.00 5.30 4.31 4.12 -0.43
6Mn2+ -0.01 -1.85 0.79 0.00 0.00 -1.07 -0.76...-1.24e -0.43

a DFT results with the BP86 functional.b Contributions from the core-shell spin polarization (1s,2s,3s), valence-shell spin polarization (VS),
and singly occupied orbital(s) (SOMO).c From ref 11, unless stated otherwise.d Kasai, P. H.Acc. Chem. Res.1971, 4, 329. Ar-matrix isolation.
e Values obtained in different host crystals; see ref 1.

Table 2. Spin Densities at the Metal Nuclei (au) for a Series of First-Row Transition Metal Complexesa

contributionsb

core

molecule 1s 2s 3s VS SOMO total expc 3s/2s
3TiO 0.03 -0.24 0.02 -0.12 2.31 1.99 1.91 -0.08
2TiF3 0.01 -0.17 0.03 -0.09 1.07 0.86 0.70...0.73 -0.18
3VN 0.03 -0.34 0.07 -0.27 2.87 2.37 2.23 -0.21
4VO 0.02 -0.58 0.17 -0.25 2.74 2.09 1.98 -0.29
6Cr+ 0.00 -1.38 0.42 0.00 0.00 -0.97 -0.30
6[Cr(CO)4]+ -0.01 -1.20 0.39 0.35 0.00 -0.47 -0.82 -0.33
6Fe3+ -0.03 -2.30 1.19 0.00 0.00 -1.14 -0.81...-1.05d -0.52
2[Fe(CO)5]+ -0.01 -0.33 0.19 0.05 0.10 0.00 -0.02 -0.58
2[Co(CO)4] 0.00 -0.38 0.23 0.05 0.10 0.00 -0.05 -0.61
2[Ni(CO)3H] -0.02 -0.18 0.12 0.00 0.01 -0.06 -0.02 -0.67

a DFT results with the BP86 functional.b Contributions from the core-shell spin polarization (1s,2s,3s), valence-shell spin polarization (VS),
and singly occupied orbital(s) (SOMO).c From ref 11, unless stated otherwise.d Values obtained in different host crystals; see ref 1.
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2 provides the same analysis for other 3d complexes. In addition
to the 1s, 2s, and 3s core contributions (i.e., contributions from
MOs with predominantly metal core character), we summarize
under “valence” contributions arising from the spin polarization
of the doubly occupied valence MOs. The direct contribution-
(s) from the SOMO(s) is(are) also given (for cases such as MnH
or MnF2, where more than one SOMO possesses s-character,
their contributions have been summed up). Spin densities derived
from experimental hyperfine coupling constants11 are included
for comparison.

While contributions from valence-shell spin polarization vary
in both their signs and magnitudes, the core contributions depend
much less on the detailed bonding situation (compare, e.g.,
[Mn(CN)4]2- and MnF2).34 The negative 2s contributions
dominate, whereas the 3s contributions are smaller and positive.
The 1s contributions are very small. Both 2s and 3s contributions
increase with increasing spin multiplicity of the system.
However, the ratio between 3s and 2s (3s/2s ratio in Tables 1
and 2) remains close to-0.5 for all Mn complexes (Table 1).
A more detailed analysis indicates that both the 2s and 3s
contributions exhibit a remarkable proportionality to the total
3d spin population (Figure 3). Neither the specific bonding
situation nor the spin population of the metal 4s orbitals
influence the 2s and 3s contributions appreciably. For example,
we may compare the 2s and 3s contributions toFN for the6Mn
atom (-1.78 and 0.78 au), the7Mn+ cation (-1.79 and 0.76
au), and the6Mn2+ cation (-1.85 and 0.79 au).

Interestingly, the 3s/2s ratio is influenced more by nuclear
charge than by anything else (Tables 1 and 2). It becomes more
negative when moving toward the right end of the 3d series.
This is seen best when comparing the isoelectronic high-spin
d5 ions 6Cr+, 6Mn2+, and 6Fe3+, for which the 3s/2s ratio is
computed to be-0.30, -0.43, and -0.52, respectively.
Intuitively, it is not clear whether this is just a consequence of
a change in the relative magnitudes of the (spin-averaged) 3s
and 2s orbitals at the nucleus or of an increasing spin
polarization of the 3s orbital with increasing nuclear charge.
As will be shown below, the latter interpretation is to be
preferred. In the following, the spatial parts of the spin-orbitals
ψ2s

R (r )R(σ), ψ2s
â (r )â(σ), ψ3s

R (r )R(σ), and ψ3s
â (r )R(σ) will be

abbreviated as 2sR(r), 2sâ(r), 3sR(r), and 2sâ(r), respectively
(subscripts U and R will indicate unrestricted or restricted
orbitals). For s-type orbitals, the angular part of the wave
function is constant and equal to 1. Therefore, we will in the

following refer to the radial wave functions only (hence, the
scalar argumentr is used, rather than the vectorr ). A given
pair of spin-polarized orbitals 2sU

R and 2sU
â contributes toFN

like (2sU
R(0))2 - (2sU

â (0))2. The function (2sU
R(r ))2 - (2sU

â (r ))2

may be divided into two parts corresponding to (i) the
polarization of the 2sR orbital and (ii) the polarization of the
2sâ orbital, relative to the corresponding orbitals in the restricted
(Hartree-Fock or Kohn-Sham) calculation. We may thus
expand the function as

If we denote [2sU
R(r) - 2sR(r)] as∆2sR and [2sU

â (r) - 2sR(r)] as
∆2sâ, eq 6 may be rewritten as

Both ∆2sR(r) and∆2sâ(r) are much smaller than 2sR(r). The
quadratic terms (∆2sR(r))2, (∆2sâ(r))2 may therefore be ne-
glected. Furthermore, to a large extent (∆2sR(r))2 is compensated
by -(∆2sâ(r))2 (cf. section 5). The left side of eq 7 may thus
be approximated as

Analogously we obtain for the contribution from the 3s
orbitals

The ratio between the 3s and 2s orbital contributions is thus
to a good approximation

Each of the orbital contributions toFR-â(r) is therefore
roughly proportional to the difference between the restricted
and unrestricted orbitals, but also to the absolute value of the
restricted orbital. As a consequence, the much larger value of
the 2s orbital at the nucleus results in the larger 2s orbital
contribution to FR-â(0), although ∆3sR(0) - ∆3sâ(0) >
∆2sR(0) - ∆2sâ(0). The ratio 3sR(0)/2sR(0) changes only slightly
throughout the 3d series: for Cr+, Mn2+, and Fe3+, we obtain
the ratios-0.373, -0.377, and-0.383, respectively (BP86
results). In contrast,∆3sR(0) - ∆3sâ(0)/∆2sR(0) - ∆2sâ(0)
changes from-0.821 for Cr+ through -1.138 for Mn2+, to
-1.348 for Fe3+ (extracted from ROBP86 and UBP86 results).
An interpretation of this trend is given in section 5.

While the valence-shell spin polarization contributions toFN

appear to be irregular at first sight, we find a relation between
their sign and the character of the SOMO: The valence
contribution toFN is positive only when there is no metal 4s
admixture into the SOMO (e.g., in6Mn0, 6[Mn(CN)4]2-,
6[Cr(CO)4]+) or when the admixture is very small (2[Mn(CO)5],
2[Fe(CO)5]+).35 In the presence of significant metal 4s contribu-

(34) The low sensitivity of spin polarization contributions toFN in organic
radicals on the particular bonding situation has been discussed. The
proportionality between the 1s and 2s contributions for CH3 over a wide
range of conditions (out-of-plane bending) has also been reported.

(35) For main-group systems with 2p-type SOMOs, that for symmetry
reasons may not mix with the bonding MOs, valence-shell spin polarization
always contributes positively toFN (at the given main-group center).19

Figure 3. Correlation between Mulliken gross d-orbital spin popula-
tions and core-shell spin polarization for a series of manganese
complexes. BP86 results.

(2sU
R(r))2 - (2sU

â (r))2 ) [(2sU
R(r))2 - (2sR(r))2] +

[(2sR(r))2 - (2sU
â (r))2] ) [2sU

R(r) + 2sR(r)][2sU
R(r) -

2sR(r)] + [2sR(r) + 2sU
â (r)][2sR(r) - 2sU

â (r)] (6)

(2sU
R(r))2 - (2sU

â (r))2 ) [2(2sR(r)) + ∆2sR(r)]∆2sR(r) -

[2(2sR(r)) + ∆2sâ(r)]∆2sâ(r) ) 2(2sR(r))(∆2sR(r) -

∆2sâ(r)) + (∆2sR(r))2 - (∆2sâ(r))2 (7)

(2sU
R(r))2 - (2sU

â (r))2 ≈ 2(2sR(r))(∆2sR(r) - ∆2sâ(r)) (8)

(3sU
R(r))2 - (3sU

â (r))2 ≈ 2(3sR(r))(∆3sR(r) - ∆3sâ(r)) (9)

(3sU
R(r))2 - (3sU

â (r))2

(2sU
R(r))2 - (2sU

â (r))2
≈ 3sR(r)

2sR(r)

∆3sR(r) - ∆3sâ(r)

∆2sR(r) - ∆2sâ(r)
(10)
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tions to the SOMO (and thus of large direct, positive SOMO
contributions toFN), the spin polarization of the valence shell
always contributes negatively toFN (cf. MnH, MnO, MnO3,
and TiF3 in Tables 1 and 2).

The signs of the individual MO contributions in Tables 1
and 2 remain the same with the other gradient-corrected and
hybrid functionals compared in ref 11, or even at the UHF level.
From a quantitative point of view, the contributions change only
relatively little for different correlation functionals tested but
change significantly upon inclusion of Hartree-Fock exchange
into the exchange functional. This is easily understandable, as
UHF calculations overestimate spin polarization considerably
and thus lead to much larger negative core-shell contributions
to FN. In contrast, gradient-corrected functionals tend to
underestimate the core-shell spin polarization.11 Admixture of
(the right amount of) Hartree-Fock exchange frequently brings
the results into better agreement with experiment. Negative
contributions from valence-shell spin polarization are also often
overestimated at the UHF level. In all cases studied, the UHF
spin densities at the metal are lower than the DFT results (due
to the core-shell contributions) and too low compared to
experiment (cf. ref 11).

As an example, UHF results for a series of atomic high-spin
d5 systems are shown in Table 3. All qualitative aspects (sign
and relative magnitude of the orbital contributions) are the same
for UHF as for DFT (BP86, cf. Tables 1 and 2). We note that
the increase in the 3s/2s ratio along the 3d series (cf. discussion
above) is also present, albeit somewhat overestimated, at the
UHF level. Referring to eq 10, 3sR(0) /2sR(0) changes from
-0.362 for Cr+ through-0.367 for Mn2+ to -0.373 for Fe3+,
and ∆3sR(0) - ∆3sâ(0) /∆2sR(0) - ∆2sâ(0) changes from
-0.667 for Cr+, through-1.290 for Mn2+, to -1.348 for Fe3+

(ROHF and UHF results, respectively). The qualitative similarity
of the DFT and HF results justifies our use, in the following
section 5, of HF wave functions in the detailed analysis of spin
polarization in atoms. We note that spin contamination is
negligible for the high-spin atomic systems studied, even with
UHF wave functions.

5. Analysis of Spin Polarization in Atomic Systems

We will start our discussion with a comparison of spin-
restricted and spin-polarized orbitals for Mn2+. In its 6Mn2+

ground state, the cation has five unpaired electrons, all of them
occupying metal 3d orbitals. The maximum of the 3d radial
distribution is located at only slightly larger radius than the
outermost maximums of the doubly occupied 3s and 3p semicore
orbitals (Figure 1). The 2s and 2p orbitals are much more
contracted and well separated from the M shell.

Spin Polarization of 2s vs 3s and 2p vs 3p Core Shells.
Panels a-d of Figure 4 show radial distributions of the 2s, 2p,
3s, and 3p ROHF orbitals of6Mn2+, respectively, as well as

the associated differences between the UHF and ROHF distribu-
tions. The area confined between [ψU(r)]2r2 - [ψR(r)]2r2 and
the x axis may be interpreted as a measure of spin-density
redistribution within a given spin-orbital, due to spin polariza-
tion. We find that (a) in areas where the spin polarization
increases the magnitude of theR spin-orbital, the magnitude
of the correspondingâ spin-orbital is decreased and vice versa;
(b) close to the nucleus (within∼0.3 au), the spin density of
the 2sR orbital decreases whereas that of the 3sR orbital increases
(see Figure 4a,c). The same holds for the relation between the
2sâ and 3sâ curves. Furthermore, the 2pR and 3pR curves, as
well as the 2pâ and 3pâ curves, exhibit the same kind of
complementarity in the core region (cf. Figure 4b,d). This
suggests that the relation between the 2s and 3s contributions
to FN, in particular their opposite sign (as well as the relation
between 2p and 3p contributions to the dipolar coupling, cf.
section 7), is due to the orthogonality required between the
orbitals of the M and L shells.

To gain deeper insight into this relation, we examine in Table
4 the influence of spin polarization on the values of two-electron
integrals between the SOMO(s) and the (spin-polarized) doubly
occupied orbitals. We discuss first the exchange integrals. Each
of them has been calculated (a) for both electrons occupying
ROHF orbitals, (b) for the unpaired electron in a ROHF orbital
and the “paired” electron in a UHF orbital, and (c) for both
electrons in spin-relaxed (unrestricted) orbitals. This allows us
to compare the energy gain/loss due to the spin polarization of
the doubly occupied orbital and the effect of the relaxation
(contraction) of the SOMO. The spin polarization of the 2s and
2p orbitals increases their exchange interaction with the SOMO,
and the SOMO relaxation enhances this interaction further, so
that the exchange stabilization may be understood as a driving
force of 2s and 2p spin polarization. Exchange stabilization
correlates with an increase in the overlap of the radial wave
functions (Table 4, Figure 4a,b). In the following, we will refer
to this type of overlap integral asradial oVerlap, as opposed to
the more common overlap integral defined in eq 5. The
exchange of the 3s or 3p orbitals with the 3d SOMO is de-
creased by core-shell spin polarization and is accompanied by
a decrease in the radial overlap (Table 4). Relaxation of the
SOMO recovers only part of the radial overlap and of the
exchange interaction. Obviously, the redistribution of spin
density does not enhance the exchange interaction with the
SOMO for all orbitals.

This may be not too surprising, as not only exchange with
the SOMO but also Coulomb repulsion with the SOMO,
exchange and Coulomb repulsion with the other electrons, and
electron-nuclear attraction and kinetic energy change upon
going from the ROHF to the UHF wave function. Indeed, the
absolute value of the exchange energy is roughly 1 order of
magnitude smaller than these other terms. Note, also, that
changes in the exchange and Coulomb interactions for theR
spin-orbital are partly compensated by the corresponding,
complementary changes in theâ component (Table 4). Spin
polarizations of individual orbitals are obviously not independent
processes.

What is the driving force for the spin polarization of the 3s
(and 3p) orbitals? To understand this we have to be aware that
the optimized orbitals for an atom have to be orthogonal. This
may be realized (a) by the spin parts, (b) by the angular parts,
or (c) by the radial parts of the wave functions. For two s-type
R spin-orbitals, condition c applies; i.e., the radial functions
have to be orthogonal, both for the ROHF and UHF wave
functions. In other words, the area between the functionf )

Table 3. Spin Densities at the Metal Nuclei (au) for a Series of
Atomic Systems with Five Singly Occupied 3d Orbitalsa

contributionb

core

atom/ion 1s 2s 3s VS SOMO total expc 3s/2s
6Cr+ -0.04 -2.11 0.51 0.00 0.00 -1.64 -0.24
6Mn -0.04 -2.71 1.31 1.08 0.00 -0.36 -0.33 -0.48
6Mn2+ -0.08 -2.82 1.34 0.00 0.00 -1.57 -1.24...-0.76 -0.48
6Fe3+ -0.12 -3.56 2.21 0.00 0.00 -1.48 -0.81...-1.05 -0.62

a UHF results.b Contributions from the core-shell spin polarization
(1s,2s,3s), valence-shell spin polarization (VS), and singly occupied
orbital(s) (SOMO).cCf. Tables 1 and 2 for references.
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2s(r)3s(r) r2 and thex axis in regions wheref is positive has to
be equal to the area in regions wheref is negative. This is
demonstrated in Figure 5 for the spin-restricted case. If we now,
for example, allow the 2sR orbital to be polarized (decontracted
to largerr, cf. Figure 4a), the negative area underf decreases,
whereas the positive area increases. The orthonormality between
2sR and 3sR has been lost. To recover it, the polarization of the
3sR orbital must again enhance the negative area and reduce
the positive area; i.e., it has to contract. Changes of the 2sâ and
3sâ spin-orbitals behave analogously, with opposite directions.
The same conditions apply to the 2pR/3pR and 2pâ/3pâ pairs;
i.e., their radial functions must also remain orthogonal. Thus,
orthogonality requires complementary polarizations of the L and
M shells. This orthogonality does not hold strictly for molecular
systems. However, as the nature of the core orbitals does not
change much in molecules, we expect that the same mechanisms
apply (see further below).

From this we conclude that the 2s orbital is spin-polarized
to enhance the exchange interaction with the SOMO. The 3s
orbital has to stay orthogonal on 2s, even if this means a reduced
exchange interaction with the SOMO. Why does the spin
polarization of the 2s orbital dominate? The reason is that the
energy gain in the exchange interaction between the 2s and the
3d SOMO is much larger than the energy loss due to the
exchange interaction between the 3s and the 3d SOMO (Table
4). If we were to optimize the exchange between 3s and the

SOMO, the reduced exchange interaction between 2s and the
SOMO would overcompensate the gain. This is best illustrated
in Figure 4. 2sR is well separated from 3d and clearly enhances
its interaction with the SOMO upon radial expansion (Figure
4a). In contrast, spin polarization of 3sR is much less effective,
as areas with increased and reduced overlap will partly
compensate each other (Figure 4c). The same arguments may
be applied to the spin polarization of the 2p and 3p orbitals
(Figure 4b,d). The polarization of 2sR, 3sR, and 3dR orbitals is
of course not an isolated process but is accompanied by the
polarization of all other orbitals of either spin. Besides the
exchange interaction, Coulomb repulsion and electron-nucleus
attraction also come into play. This will be discussed in more
detail below.

The requirement of orthogonality between the 3s and 2s
orbitals helps us also to understand better the dependence of
their contributions toFN on nuclear charge. From the orthogo-
nality of 2sU

R(r) and 3sU
R(r) follows:

The first term in the middle of (11) vanishes, since the ROHF
2s and 3s orbitals are also orthogonal. The fourth term is negli-
gible with respect to the second and third terms, since∆2sR(r)

Figure 4. ROHF radial distribution functions [Rnl(r)]2r2 (scaled by1/150), and difference between UHF and ROHF radial distributions for Mn2+. (a)
2s, (b) 2p, (c) 3s, (d) 3p. For comparison, the ROHF radial distribution function of the singly occupied 3d orbitals (scaled by1/50) is also shown.
See text also.

〈2sU
R(r)|3sU

R(r)〉 ) 〈2sR(r)|2sR(r)〉 + 〈2sR(r)|∆3sR(r)〉 +

〈∆2sR(r)|3sR(r)〉 + 〈∆2sR(r)|∆3sR(r)〉 ) 0 (11)
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<< 2sR(r) and∆3sR(r) << 3sR(r) . Hence,

Analogously, it may be shown that

Figure 6 illustrates eq 12 for Mn2+. The function
∆3sR(r)2sR(r)r2 is positive at mostr values, as 2sR(r) and∆3sR

have equal sign where they overlap significantly. The function
∆2sR(r)r2 is negative everywhere, as regions of negative
∆2sR(r) always match those of positive 3sR(r), and vice versa.36

The total area under∆2sR(r)3sR(r)r2 and under∆3sR(r)2sR(r)r2

is calculated to be+0.000 238 and-0.000 238, respectively.
The approximation in deriving eq 12 from eq 11 appears thus
to be well-justified. The spin polarization contributions

(36) Molecular or atomic orbitals are unique except for a phase factor.
Unless noted otherwise, in this work all s-type orbitals are defined as to be
positive at the nucleus. The choice of phase does not alter the physical
mechanism.

Table 4. Exchange, Coulomb, and Radial Overlap Integrals between the SOMO and the Doubly Occupied Orbitals for6Mn2+ (au)a

exchange integrals 1s 2s ∑2p 3s ∑3p

〈ψR3dR|3dRψR〉 0.000 278 0.026 949 0.079 875 0.081 590 0.298 482

〈ψU
R3dR|3dRψU

R〉 0.000 278 0.027 109 0.080 715 0.081 478 0.298 100

〈ψU
R3dU

R|3dU
RψU

R〉 0.000 278 0.027 172 0.080 900 0.081 553 0.298 340

〈ψU
R3dU

R|3dU
RψU

R〉 - 〈ψR3dR|3dRψR〉 0.000 000 0.000 223 0.001 025 -0.000 037 -0.000 142

5 ∑ψ-[〈ψU
R3dU

R|3dU
RψU

R〉 ] - 〈ψR3dR|3dRψR〉 ] ) - 0.005 345

Coulomb integrals 1s 2s ∑2p 3s ∑3p

〈ψR3dR|ψR3dR〉 1.181 876 1.163 092 3.503 115 0.926 861 2.714 807

〈ψU
R3dR|ψU

R3dR〉 1.181 876 1.162 929 3.502 484 0.927 437 2.720 802

〈ψU
R3dU

R|ψU
R3dU

R〉 1.182 956 1.163 962 3.505 616 0.927 996 2.722 392

〈ψU
â 3dU

R|ψU
â 3dU

R〉 1.182 956 1.164 224 3.506 621 0.926 797 2.709 494

radial overlap integrals 1s 2s 2p 3s 3p

〈ψR|3dR〉b 0.001 854 0.028 223 0.025 459 0.069 239 0.072 500

〈ψU
R|3dR〉b 0.001 855 0.028 413 0.025 748 0.069 099 0.072 259

〈ψU
R|3dU

R〉 b 0.001 857 0.028 444 0.025 776 0.069 116 0.072 272

nuclear attraction integrals 1s 2s 2p 3s 3p

〈ψR|Z/r|ψR〉 612.889 503 131.448 180 129.454 856 40.539 902 37.291 698

〈ψU
R|Z/r|ψU

R〉 612.885 311 131.191 339 129.169 607 40.713 359 37.617 042

〈ψU
â |Z/r|ψU

â 〉 612.892 007 131.627 837 129.643 564 40.433 853 37.032 423

3d
〈ψR|Z/r|ψR〉 29.548 909

〈ψU
R|Z/r|ψU

R〉 29.575 906

a Comparison of ROHF and UHF data. All radial wave functions have been normalized to 1/(4π) ) 0.079 577 4; see ref 30.b 〈ψ|æ〉 ) ∫ψ(r)*æ(r)
r2 dr, whereψ(r) andæ(r) are radial parts of the orbitalsψ(r ,σ)andæ(r ,σ), respectively.

Figure 5. Orthogonality of 2s and 3s orbitals in Mn2+ (ROHF result).
The function f) 2s(r)3s(r)r2 integrates to zero. For comparison, the
functions 2s(r)r2 and 3s(r)r2 are also shown. For 2s, the phase
convention differs from that used elsewhere.36

〈2sR(r)|∆3sR(r)〉 + 〈∆2sR(r)|3sR(r)〉 ≈ 0 (12)

〈2sR(r)|∆3sâ(r)〉 + 〈∆2sâ(r)|3sR(r)〉 ≈ 0 (13)

Figure 6. Consequences of the orthogonality between 2s and 3s orbitals
in Mn2+. The function∆2sR(r)3sR(r)r2 + ∆3sR(r)2sR(r)r2 integrates to
zero; see text.
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∆3sR(r) and ∆2sR(r) have to match the restricted orbital
distributions 2sR(r)r2 and 3sR(r)r2, to fulfill eq 12.

Figure 7 examines the changes in the ROHF 2s and 3s radial
distributions upon increasing the nuclear charge by two (the d5

ions 6Cr+ and 6Fe3+ are compared). Both 2s and 3s contract
and increase their overlap with∆3sR and ∆2sR, respectively.
The redistribution of the electron density is more pronounced
for the more polarizable 3s orbital. This is seen most clearly
when comparing the area confined between the curves 3s(Fe3+)
and 3s(Cr+) with the area confined between the curves 2s(Fe3+)
and 2s(Cr+). The contraction of 3s and 2s will thus enhance
〈∆2sR(r)|3sR(r)〉 more than〈∆3sR(r)|2sR(r)〉. To retain orthogo-
nality in the spin-polarized case,∆3sR(r) has to increase relative
to ∆2sR(r). This is supported by Figure 8: While the absolute
value of ∆2sR(r) increases only slightly from Cr+ to Fe3+,
∆3sR(r) is significantly enhanced. Consequently, the ratio
∆3sR(0)/∆2sR(0) is larger for Fe3+. Analogously, ∆3sâ(0)/
∆2sâ(0) is enhanced. As a result, the magnitude of the 3s/2s
ratio of core-shell spin polarization contributions toFN increases
with increasing nuclear charge (cf. Tables 2 and 3), due to the
requirement of orthogonality between 2s and 3s shells.

Spin Polarization of the1sOrbital. The direction of 1s spin
polarization in Mn2+ is the same as for the 2s orbital: theR
component expands, whereas theâ component contracts. Both
processes produce a negative contribution toFN (cf. Tables 1

and 3). Previously the minimization of the electrostatic repulsion
with the unpaired electrons had been considered to be the major
driving force of the 1s spin polarization.1,17 According to our
calculation, 1s spin polarization does not lead to any significant
difference between theR and â components with respect to
exchange and Coulomb interaction with the SOMO, cf. Table
4.37 From this, and from the small 1s contributions of either
sign toFN in different systems (Tables 1-3), we conclude that
the 1s orbital reacts to the spin polarizations of the other doubly
occupied orbitals rather than minimizing its repulsion with the
SOMO. Note, for example, that the 1s contribution toFN and
the sum of the valence-shell contributions always have opposite
signs (cf. also Tables 1 and 2).

Spin Polarization and Energy Gain. The gain in exchange
energy, due to spin polarization, between the five SOMOs and
the doubly occupied orbitals in Mn2+ (-0.005 345 au; see Table
4) corresponds to 104% of the difference between the total UHF
and ROHF potential energies (Table 5). For the4N atom, the
corresponding gain in exchange energy represents 105% of the
total reduction in potential energy (Epot, Table 5). This is
consistent with the usual interpretation of spin polarization as
being due to improved exchange interactions between the
SOMO(s) and the doubly occupied orbital(s) in the UHF wave
function.

Additionally, the spin polarization creates a new equilibrium
between electron-electron repulsion and electron-nuclear
attraction. The crucial role of electron-nuclear attraction energy
(ENe) is demonstrated in Table 5. It provides the main energy
gain upon going from ROHF to UHF wave functions. This may
be rationalized as follows: As the ROHF wave function is not
relaxed with respect to exchange interactions between the
SOMO and the otherR spin-orbitals, the density is too diffuse.
Spin polarization helps to contract the metal 3dR, 3pR, and 3sR

orbitals and thus enhances electron-nuclear attraction. Part of
this energy gain is compensated by the decontraction of the

(37) The strongly localized 1s shell experiences∼2 orders of magnitude
less exchange interactions with 3d than 2s does.

Figure 7. Effect of nuclear charge on the 2s and 3s orbitals. Com-
parison of [2s(r)]2r2 and [3s(r) ]2r2 for Cr+ and Fe3+ (ROHF results).

Figure 8. Core-shell spin polarization in Cr+ and Fe3+: ∆2sR(r),
∆3sR(r).

Table 5. Analysis of ROHF and UHF Total Energies of6Mn2+

and4N (au)
6Mn2+ 4N

Etot,ROHF
a -1148.793 015 -54.398 026

Etot,UHF
a -1148.795 003 -54.401 648

Etot,UHF - Etot,ROHF -0.001 988 -0.003 622
Ekin,ROHF

b 1148.959 337 54.397 176
Ekin,UHF

b 1148.962 479 54.401 243
Ekin,UHF - Ekin,ROHF 0.003 142 0.004 067
Epot,ROHF

c -2297.752 352 -108.795 202
Epot,UHF

c -2297.757 482 -108.802 891
Epot,UHF - Epot,ROHF -0.005 130 -0.007 689
ENe,ROHF

d -2717.979 039 -128.343 514
ENe,UHF

d -2718.011 143 -128.353 641
ENe,UHF - ENe,ROHF -0.032 104 -0.010 127
Eee,ROHF

e 420.226 687 19.548 312
Eee,UHF

e 420.253 661 19.550 750
Eee,UHF- Eee,ROHF 0.0269 74 0.0024 38
EC,ROHF

f 511.200 248 31.975 583
EC,UHF

f 511.230 621 31.987 506
EC,UHF- EC,ROHF 0.030 373 0.011 923
EX,ROHF

g -90.973 561 -12.427 271
EX,UHF

g -90.976 960 -12.436 756
EX,UHF - EX,ROHF -0.003 399 -0.009 485

a Total (kinetic + potential) energy of the system.b Total kinetic
energy.c Total potential energy (Epot ) ENe + Eee). d Total energy of
the electrons due to nuclear attraction.e Total electron-electron repul-
sion energy (Eee ) EC + EX). f The sum of all Coulomb integrals,
including self-interactions.g The sum of all exchange integrals, includ-
ing self-interactions.
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charge density in 1sR, 2sR, 2pR, as well as in 3sâ and 3pâ (1sâ,
2sâ, 2pâ contract and thus lowerENe). Tables 4 and 5 show that
the spin polarization improves exchange (EX) but increases the
total Eee. This is also a consequence of an overall more
contracted charge density. Nevertheless,Epot decreases, due to
the large contribution fromENe. The total kinetic energy (Ekin)
increases, in agreement with the virial theorem.38

Table 4 also shows that, due to formal similarity, the exchange
integrals and their changes upon spin polarization are closely
connected with the radial overlap of the corresponding orbi-
tals. (a) The exchange interaction increases in the series
(3d,1s), (3d,2s) and (3d,3s) and so does the radial overlap; (b)
the spin polarization increases the exchange integral with the
SOMO when the radial overlap with the SOMO increases and
vice versa.39 In contrast, the Coulomb interaction increases along
the series (3d,3s), (3d,2s), and (3d,1s), even though the 2s and
particularly the 1s maximums are far from the 3d maximum.
This implies that〈1/r12〉 may actually increase with increasing
distance between the radial maximums and vice versa. Com-
pared to the 1s wave function, the 3s wave function occupies a
larger angular space. Thus, the electrons in 3s and 3d orbitals
are on average further apart (despite the large overlap of the
corresponding radial wave functions).

Coming back to the historical interpretations of spin polariza-
tion in transition metal systems (section 21,15), we conclude that
the expansion of the 2sR orbital reduces its electrostatic repulsion
with the SOMO, both by reduced Coulomb interaction (angular
correlation) and by improved exchange (radial correlation). This
would correspond to the usual “effective attraction” of like-
spin electrons on a radial scale. On the other hand, the boundary
condition of orthogonality to 2s forces the 3s spin polarization
(expansion of 3sR, contraction of 3sâ), irrespective of the
resulting partial energy loss.

Comparison to the Main-Group Case (4N). The quartet
ground state of the nitrogen atom is a good main-group example
to be compared with, as it exhibits a spherical distribution of
the three unpaired electrons in the 2p orbitals. The positive 2s
contribution toFN (0.91 au, UHF result) overcompensates the
negative 1s contribution (-0.74 au), giving an overall positive
FN (cf. ref 19e). The spin polarization of the nitrogen 1s and 2s
orbitals (Figure 2a,b) may be compared to the polarization of
the 2s and 3s orbitals in Mn2+ (Figure 4a,c). For nitrogen, the
1sR and 2sâ orbitals expand, whereas the 1sâ and 2sR orbitals
contract. Note that, in contrast to the situation for the 3s and
3d orbitals in Mn2+ (see above), the second maximum of the
2s distribution is located at slightly larger radius than the 2p
maximum.

The opposite direction of the polarization of the 1sR and 2sR

orbitals is again required by their mutual orthogonality. How-
ever, in contrast to the Mn2+ case, in this case, the spin polari-
zation enhances the exchange interaction with the 2p SOMO
for both s orbitals, despite the slight decrease of radial overlap
between 2sR and 2pR (Table 6). This appears to be due to the
dominant role of the second maximum of 2sR. Spin polarization
brings the latter closer to the 2pR maximum and thus enhances
2sR/2pR exchange. The acccompanying increase in 2sR/2pR

Coulomb repulsion is compensated by reduced 2sâ/2pR repulsion
and increased nuclear-electron attraction (Table 6).

Valence-Shell Spin Polarization in Mn0. As a first step
toward a better understanding of valence-shell spin polariza-
tion in transition metal systems, we examine the spin polariza-
tion of the 4s orbital in the6Mn0 atom, comparing ROHF and
UHF wave functions and energies. The spin polarization is
qualitatively the same as discussed above for the 2s orbital in
nitrogen: TheR-component contracts, whereas theâ component
expands (Figure 9). The exchange interaction between 3d and
4s (0.006 581 au at the ROHF level) is overall less pronounced
than between 2s and 3d in Mn2+ (0.026 949 au; cf. Table 4),
but the energy gain upon spin polarization is still significant
(+0.000 872 au). This is due to the large polarizability of the
4s shell, which also leads to a significant redistribution of spin
density (Figure 9) and to a larger spin polarization contribution
to FN from 4s compared to 3s (Table 1). We may also view
this, within a configuration-interaction framework,40 as a
consequence of the lower excitation energies of the 4s valence
compared to the 3s core orbital (for the same reason, spin
contamination is largely connected to valence-shell spin polar-
ization; see below). The same argument holds of course for the
comparison between valence-shell 2s vs core-shell 1s spin
polarization in nitrogen (see above).

6. Valence-Shell Spin Polarization in Molecules

As discussed above, the spin polarization of the core shells
does not depend much on the particular bonding situation. It is
similar for molecules and for atomic systems (cf. Tables 1 and

(38) Levin, I. N.Quantum Chemistry; Allyn and Bacon: Boston, 1975;
p 363.

(39) Exchange interactions are more short-ranged than Coulomb repulsion
and thus parallel more closely the radial overlap (see, e.g., Bethe, H. A.;
Jackiw, R. Intermediate Quantum Mechanics; W. A. Benjamin, Inc.:
Reading, MA, 1974). In contrast, Coulomb repulsion may also be large for
two nonoverlapping pointlike charge distributions, provided their distance
is not too large. Of course, even the exchange interactions may deviate
from the behavior of the radial overlap integrals, due to the influence of
the r12

-1 factor in the integrand of eq 4 (cf. also discussion for4N). (40) Melchior, M. T.,J. Chem. Phys.1969, 50, 511.

Table 6. Exchange, Coulomb, and Radial Overlap Integrals
between the SOMO and the Doubly Occupied Orbitals for4N (au)a

exchange integrals 1s 2s

〈ψR2pR|2pRψR〉 0.028 820 0.137 305

〈ψU
R2pR|2pRψU

R〉 0.029 190 0.138 789

〈ψU
R2pU

R|2pU
RψU

R〉 0.029 505 0.139 322

〈ψU
R2pU

R|2pU
RψU

R〉 - 〈ψR2pR|2pRψR〉 0.000 685 0.002 017

3∑φ - [〈ψU
R2pU

R|2pU
RψU

R〉 - 〈ψR2pR|2pRψR〉] ) -0.008 106

Coulomb integrals 1s 2s

〈ψR2pR|ψR2pR〉 0.947 366 0.668 210

〈ψU
R2pR|ψU

R2pR〉 0.947 209 0.677 922

〈ψU
R2pU

R|ψU
R2pU

R〉 0.951 949 0.680 044

〈ψU
â 2pU

R|ψU
â 2pU

R〉 0.952 208 0.655 545

radial overlap integralsb 1s 2s

〈ψR|2pR〉b 0.020 783 0.076 279

〈ψU
R|2pR〉b 0.021 107 0.075 845

〈ψU
R|2pU

R〉b 0.021 217 0.075 882

nuclear attraction integrals 1s 2s

〈ψR|Z/r|ψR〉 46.584 427 7.532 656

〈ψU
R|Z/r|ψU

R〉 46.467 873 7.803 738

〈ψU
â |Z/r|ψU

â 〉 46.669 016 7.201 735

2p
〈ψR|Z/r|ψR〉 6.703 116

〈ψU
R|Z/r|ψU

R〉 6.737 093

a ROHF and UHF results.bSee also corresponding footnote to
Table 4.
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2). In contrast, the spin polarization of the valence shells is
characteristic of the specific chemical environment and bonding.
We have selected the four examples, TiF3, MnO3, [Mn(CO)5],
and [Mn(CN)4N]-, to discuss valence-shell spin polarization
contributions to FN. DFT results obtained with the BP86
functional will be examined (Tables 1 and 2).

These complexes represent a variety of different bonding
situations (cf. Tables 7 and 8 for a characterization of the MOs).
TiF3

22 and MnO3 are isoelectronic, trigonal planar (D3h) d1

complexes. Their SOMO (7a1′) is metal-ligandσ antibonding
and is dominated by the metal 3dz

2 orbital, with some 4s
character mixed in. While the SOMO in TiF3 is localized to
94% at the metal (with 76% 3dz

2, and 18% 4s character41), in
MnO3 it is more delocalized (with 49% 3dz

2, 15% 4s, and 36%
ligand character). Threeσ-bonding orbitals (5e′, 6a1′) are formed
by the interaction of metal 3dxy and 3dx2

-y
2 orbitals (e′), a metal

3dz
2 orbital with 4s admixture (a1′), and the appropriate ligand

orbital combinations. In addition, two partialπ bonds are formed

by an interaction of the metal 3dxz and 3dyz orbitals with the
appropriate linear combination of ligand 2pz orbitals (1e′′). The
third linear combination of ligand 2pz orbitals is nonbonding
(3a2′′). [Mn(CO)5] and [Mn(CN)4N]- adopt square-pyramidal
structures (C4V symmetry). [Mn(CO)5] is a low-spin d7 complex.
Its SOMO is composed of metal 3dz

2 and 4pz orbitals (17a1).
The 4pz admixture reduces theσ-antibonding interaction with
the axial ligand by polarizing the SOMO toward the opposite
side. The metal 4s contribution to the SOMO is small, giving
a small, positive direct SOMO contribution toFN. [Mn(CN)4N]-

is a d1 complex with a single metal 3dxy-type SOMO (2b1). In
both square-pyramidal complexes, twoσ bonds in the equatorial
plane are formed by an interaction between a metal 4s/3dz

2

hybrid, the metal 3dx2
-y

2 orbital, and the corresponding ligand
σ-bonding hybrids (a1 and b2 MOs). Theσ bond to the axial
ligand involves mainly the metal 3dz

2 orbital. The metal 3dxy

orbital (b1) is partiallyπ bonding to the equatorial ligands, the
3dxz, 3dyz orbitals (e) interact also with the axial ligand. The
antibonding counterparts of the latter three orbitals (which may
be derived from the well-knownt2g set in octahedral symmetry)
correspond to the six nonbonding d electrons of [Mn(CO)5].

The valence-shell spin polarization concentratesR spin
density at the metal (cf. discussion above for the Mn0 atom and
ref 18). An excess ofâ spin density is left at the ligands. In
[Mn(CN)4N]-, the spin polarization increases the atomic spin
population of Mn from 0.51 (SOMO contribution) to 1.18 (total
spin population41). TheR spin density is withdrawn mainly from
the axial ligand and added mainly to d-type orbitals of Mn (0.25,
0.10, 0.10, 0.07, and 0.06 electrons to dxy, dxz, dyz, dx

2
-y

2, and
dz

2, respectively). This likely enhances the overall negative core-
shell spin polarization contributions toFN (cf. section 5). The
spin population of the 4s orbital increases also slightly (several
metal-ligand bonding orbitals are involved), resulting in a small
contribution toFN of +0.04 au (Table 1). This is much less
than the valence-shell contribution in Mn (+0.93 au), where
the spin polarization of the fully occupied 4s orbital contributes
(note also that [Mn(CN)4N]- has only one unpaired electron
whereas Mn has five).

Similarly, spin polarization increases the spin population at
the metal in Mn(CO)5 from 0.58 (SOMO contribution) to 0.82.
The increase concentrates mostly in orbitals of e symmetry (the
metal 3dxz, 3dyz, 4px, and 4py orbitals, total gain∼0.13). The
spin population in orbitals of a1 symmetry increases only slighly,
by 0.04 for 3dz2 and by 0.03 for 4s. The increase is only 0.03
and 0.01 for 3dxy and 3dx2

-y
2, respectively (with significant

consequences forAdip, cf. below).
Negative valence-shell contributions toFN are found for the

isoelectronic TiF3 and MnO3, due to an interesting rehybrid-
ization mechanism: The spin polarization, mainly of the metal-
ligand σ-bonding 6a1′ MO, shifts R density from the ligands
toward the metal. Therefore, the spin population at the metal is
enhanced from 0.93 (SOMO contribution) to 1.04 in TiF3, and
from 0.64 to 1.19 in MnO3 (the larger effect for the manganese
complex is a consequence of the larger covalence of theσ
bonds). However, at the same time, the metal contribution to
this bonding MO loses 4s character and gains 3d character.
Therefore, the overall valence-shell spin polarization contribu-
tion to FN and thus toAiso is negative (and that toAdip positive,
cf. below), in particular for the very covalent MnO3. We also
note that, in TiF3, the excessR spin density is distributed almost
equally over all five metal d orbitals. In contrast, the excess
spin population in MnO3 pertains mostly to thedz

2, dxz, and dyz

orbitals (+0.17, +0.13, and+0.13, respectively) and less to
the dxy and dx2

-y
2 orbitals (each+0.05).

(41) The orbital compositions and spin populations reported here have
been obtained using a Mulliken population analysis of the BP86 Kohn-
Sham wave function.

Figure 9. ROHF radial distribution function [Rnl(r)]2r2 (scaled by1/4.)
and difference between ROHF and UHF radial distributions for the 4s
orbital in Mn0. For comparison, the radial distribution function of the
3d SOMOs (scaled by1/4.) is also plotted.

Table 7. Orbital Contributions toAdip for TiF3 and MnO3 (au)a

contribution

MO character TiF3 MnO3

7a1′ (metal 3dz2 +4s,
singly occupied MO)

0.441 0.640

3a2′′ (ligand 2pz) 0.012 0.052
1e′′ (metal 3dxz, 3dyz;

ligand 2pz)
0.005 0.147

6a1′ (metal 4s, 3 dz2;
ligand 2px, 2py)

0.013 0.206

5e′ (metal 3dxy, 3dx
2

-y
2;

ligand 2px, 2py)
-0.014 -0.113

4e′ (ligand 2s) 0.051 0.008
2a2′ (metal 3pz) -0.086 -0.018
3e′ (metal 3px, 3py) -0.108 -0.152
1a2′′ (metal 2pz) -0.067 -0.143
2e′/1e′ (metal 2px, 2py) 0.048 0.108

total 0.305 0.746
exp 0.22(1)...0.0.27(1)b 0.62(2)b

<S2> 0.7526 0.7875

a DFT(BP86) results. All values have been divided by the nuclear
g value. Contributions, which were for both molecules smaller than
0.01 au, have been omitted.b Reference 11.
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In both [Mn(CN)4N]- and MnO3, the largest valence-shell
spin polarization is experienced by doubly occupied orbitals
which are the bonding counterparts of the partly antibonding
SOMO (this holds at the BP86 level but is altered upon adding
Hartree-Fock exchange; see section 8). In [Mn(CN)4N]-, this
is the 1b1 orbital which representsπ bonding between the metal
and the equatorial ligands. In MnO3 it is the σ-bonding 6a1′
orbital. This observation may again be rationalized by a tendency
to maximize the exchange interaction with the SOMO; i.e., the
R component of the doubly occupied MO is polarized toward
the metal (where the SOMO is largely localized), theâ
component toward the ligands. Due to the large overlap with
the SOMO, the spin polarization is particularly effective in these
MOs. The abovementioned rehybridization in theR and â
components of theσ-bonding 6a1′ MO of MnO3 and TiF3 may
be understood analogously: The SOMO has more 3dz

2 than 4s
character, and thus an increase of the relative d character in the
R component of the bonding MO improves the exchange
interaction with the SOMO. In TiF3 and Mn(CO)5, the bonding
counterparts of the (antibonding) SOMO are not polarized
significantly. In TiF3, this is due to the ionic character of the
bonds. In Mn(CO)5, the SOMO is polarized away from the
ligands (by 4pz admixture) and thus has also little overlap with
the doubly occupied valence MOs.

7. Effect of Spin Polarization on Dipolar Coupling
Constants

While spin polarization is usually not considered for the
dipolar hyperfine coupling (cf. Introduction), two recent com-
putational studies have shown that in transition metal systems
spin polarization may have a significant influence.11,22The most
important MO contributions to the metal dipolar couplings of
our four example systems are summarized in Tables 7 and 8
(again, DFT results with the BP86 functional are compared).
As expected, the largest contribution in all cases is the direct
one from the SOMO. This is positive for TiF3, MnO3, and
[Mn(CO)5] but negative for [Mn(CN)4N]-.42 However, contri-

butionsdue to the spin polarization of the doubly occupied
orbitals are clearly nonnegligible. We may discriminate again
between core- and valence-shell spin polarization.

Core-Shell Spin Polarization.A common feature of all four
systems are the significant contributions toAdip from metal
p-type core orbitals. The metal 2pz contributions are always
negative; the 2px and 2py contributions are always positive. This
is consistent with the discussion in section 5: Spin polarization
expands the 2pR orbitals and contracts the 2pâ orbitals. Thus,
the positive contribution from 2pzR to Adip becomes smaller than
the negative one from 2pz

â, and the negative contributions from
2px

R, 2py
R become smaller than the positive ones from 2px

â,
2py

â. In a system of cubic or higher symmetry, these contribu-
tions would cancel exactly. In less symmetric systems, the
anisotropy of the 2p spin polarization disturbs the balance
between the two contributions. For our four systems, the effect
is clearly nonnegligible, corresponding to∼5-10% of the total
Adip. The 2pz orbital dominates the 2p shell contributions in TiF3,
MnO3, and [Mn(CO)5] (the 3dz

2-type SOMO affects particularly
the 2pzR component), whereas spin polarization contributions
from 2px and 2py orbitals are larger in [Mn(CN)4N]- (the 3dxy-
type SOMO affects mostly 2px

R and 2pyR).
The requirement of orthogonality between the 3p and 2p

shells for atoms, as stated in section 5, does not hold strictly
for molecules. Nevertheless, the 3px and 3py contributions to
Adip generally have the opposite sign of the 2px and 2py
contributions. The 2pz and 3pz contributions are also of opposite
sign for [Mn(CO)5] and [Mn(CN)4N]-. Therefore, the positive
3pz and the negative 3px and 3py contributions partially cancel,
leading to a relatively low overall 3p contribution. In TiF3 and
MnO3, the presence of thedz

2-type SOMO forces both 2pz
R and

3pz
R orbitals to expand. Therefore, 3pz and 3px/3py contributions

do not compensate but enhance each other. Therefore, the spin
polarization contributions from the 3p shell in TiF3 and MnO3

are particularly large and amount to∼23% of the totalAdip in
MnO3 and even to∼64% in TiF3!11,22

Valence-Shell Spin Polarization. In the relatively ionic
complex TiF3, valence-shell spin polarization contributions to
Adip are small, with the largest individual MO contribution
arising from a nonbonding fluorine 2s orbital combination of
4e′ symmetry (this and other results of our analysis for TiF3

are consistent with earlier results by Belanzoni et al.22). We
find larger valence-shell contributions for MnO3 (Table 7). The
covalency of the Mn-O σ and π bonds enables a significant

(42) The dipolar hyperfine interaction is a vector property and depends
on the orientation of the orbitals involved. For a singleR electron in adz

2

orbital, the (Axx,Ayy,Azz) vector is of the form (-B,-B,+2B). For the other
d orbitals, the signs are reversed. For dx

2
-y

2 (Axx,Ayy,Azz) ≈ (B, B,-2B), for
dxz (Axx,Ayy,Azz) ≈ (B, -2B, B), and so on. Analogous considerations hold
for p orbitals. For pz (Axx,Ayy,Azz) ≈ (-B,-B,+2B), for px (Axx,Ayy,Azz) ≈
(+2B,-B,-B), and for py (Axx,Ayy,Azz) ≈ (-B,2B,-B). See, e.g., ref 2 for
a detailed discussion.

Table 8. Orbital Contributions toAdip for [Mn(CO)5] and [Mn(CN)4N]- (au)a

contribution

MO in [Mn(CN)4N]-/[Mn(CO)5] character [Mn(CN)4N]- [Mn(CO)5]

-/17a1 (Mn 3dz
2, 4pz, 4s, SOMO in [Mn(CO)5]) 0.763

-/11e (Mn 3dxz, 3dyz; eq ligands 2pz) 0.032
2b1/2b1 (Mn 3dxy, eq lig 2px, 2py, SOMO in [Mn(CN)4N]-) -0.669 -0.040
13a1/14a1 (eq ligands spx, spy hybrids; Mn 4s) -0.030 0.002
5b2/5b2 (eq ligands spx, spy hybrids; Mn 3dx

2
-y

2) -0.015 0.000
1b1/1b1 (Mn 3dxy, eq ligands 2px, 2py) -0.273 -0.003
6e/10e (Mn 3dxz, 3dyz; eq ligands 2px, 2py) 0.110 0.021
4b2/6b2 (Mn 3dx

2
-y

2, eq ligands 2s+2px+2py) -0.069 -0.013
11a1/12a1 (Mn 4s+3dz

2, eq ligands 2s+2px+2py) 0.018 -0.002
8a1/9a1 (Mn 3pz) 0.076 0.057
4e/4e (Mn 3px, 3py) -0.121 -0.044
3a1/3a1 (Mn 2pz) -0.077 -0.094
1e/1e (Mn 2px, 2py) 0.163 0.048

total -0.882 0.727
exp -0.929b 0.68(6),b 0.70(5)b

<S2> 0.7729 0.7544

a DFT(BP86) results. See also footnote to Table 7.b Reference 11.
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shift of R spin density toward the metal (cf. above). Large
positive contributions toAdip arise from the 6a′ and 1e′′ MOs
(involving the metal dz2 and dxz/dyz orbitals, respectively),
whereas the5e′ MO (involving the metal dxy and dx2

-y
2 orbitals)

contributes negatively. Thus, while the overall negative spin
polarization contributions toAdip in TiF3 involve mainly the core
shells (in particular 3p), additional significant, overall positive
valence-shell contributions dominate for the more covalent
MnO3. This has consequences for the sensitivity to spin
contamination (see below).

Valence-shell spin polarization contributions toAdip in [Mn-
(CO)5] are relatively small and partially compensate each other
(Table 8). This appears to be a direct consequence of the
character of the SOMO, which overlaps very little with the other
valence MOs. In contrast, valence-shell contributions in
[Mn(CN)4N]- are significant. The largest contribution arises
from the energetically high-lying, doubly occupied counterpart
(1b1) of the 2b1 SOMO. If it were not for its very large, negative
contribution, the remaining valence-shell spin polarization
contributions would almost cancel each other: A significant
positive contribution from theπ bonding 6e MO is compensated
by negative contributions from equatoriallyσ-bonding MOs.
The significant valence-shell spin polarization contribution to
Adip (29% of the total value) in [Mn(CN)4N]- is thus at least in
part due to the presence of a doubly occupied MO that has
particularly large overlap with the SOMO.

8. Spin Polarization and Spin Contamination

The above discussion shows clearly that the two complexes
MnO3 and [Mn(CN)4N]- exhibit particularly pronounced valence-
shell spin polarization, due to the presence of high-lying doubly
occupied bonding MOs that overlap strongly with the SOMO.
These two systems were also two of the most critical cases in
our systematic validation of different density functionals for the
calculation of hyperfine coupling constants.11 In particular, spin
contamination turned out to be a problem when hybrid func-
tionals were used. For [Mn(CN)4N]-, we found that the spin
contamination was related to a mixing in of low-lying excited
states that involveπ-type orbitals. Upon going from a pure
gradient-corrected (“GGA”) functional like BP86 to hybrid
functionals incorporating exact exchange, the population of each
of the metal dxz and dyz orbitals increased dramatically, e.g.,
from 0.08 for BP86 to 0.62 for the “half-and-half” BHP86
functional. At the same time, theS2 expectation value of the
Kohn-Sham wave function43 indicated a significant increase
in spin contamination (BP86:<S2> ) 0.773; BHP86:<S2>
) 1.784). Similar effects were noted with MnO3.11 Obviously,
the exact-exchange contribution to the hybrid functionals favors
excited states of higher spin multipicity to the extent that the
UKS wave functions for the ground state of these types of
systems become significantly spin-contaminated.

In both systems, the description ofAdip deteriorated signifi-
cantly with hybrid functionals, becoming too positive for MnO3

and insufficiently negative for [Mn(CN)4N]-. Our present
analysis indicates that the spin contamination produces too large
spin populations in dxz- and dyz-type orbitals and thus too large
positive contributions toAdip from these orbitals. For similar
reasons, hybrid functionals underestimatedAdip in the related
complex [Mn(CN)5NO]2-.11 At the same time, the isotropic
coupling constants, i.e., the spin density at the metal nuclei,

are also affected significantly by the spin contamination: As
the spin population of metal d-type orbitals is exaggerated, the
spin polarization of the 3s and 2s core shells becomes too large.
Thus, for example, the core-shell spin polarization contribution
to FN in [Mn(CN)4N]- increases from-0.192 au with the BP86
functional up to-0.566 au with the BHP86 functional (with
very small changes in the valence-shell contributions). Conse-
quently, the BHP86 result forAiso (-558.5 MHz) is considerably
more negative than the experimental value (-219.5 MHz). Note,
in contrast, that for TiF3 or [Mn(CO)5] no significant spin
contamination was found,11 consistent with the small valence-
shell spin polarization (due to the small overlap between SOMO
and doubly occupied valence MOs; see above).

9. Conclusions

The present study has shed light from various directions on
hyperfine coupling in 3d transition metal complexes. From the
detailed analysis of the spin polarization of the metal core shells
in atomic systems, we have learned that the opposite contribu-
tions from the metal 2s and 3s shells to the spin density at the
metal nucleus,FN, and of the 2p and 3p shells to the dipolar
coupling constants,Adip, is a consequence of the orthogonality
requirement between orbitals of the same angular momentum.
While the 2s and 2p orbitals maximize their exchange interaction
with the SOMO, the 3s and 3p orbitals are forced to lose some
of their exchange to stay orthogonal to their respective penul-
timate shell. Changes of the ratio between 2s and 3s (and
between 2p and 3p) contributions toFN along the 3d series may
be understood from the nodal structure of the orbitals. We expect
that similar considerations apply to 4d and 5d systems.

Parts of this analysis are consistent with traditional views of
spin polarization, e.g., in main-group compounds, as being due
to enhanced exchange between theR component of the
respective doubly occupied orbitals and the SOMO. A complete
view, however, has to include the complementary polarization
of theâ spin-orbitals, as well as changes in Coulomb repulsion
and nuclear-electron attraction.

While the core-shell spin polarization contributions to the
isotropic hyperfine couplings have been found to be proportional
to the spin population in the metal 3d orbitals, they are relatively
independent of other details of the bonding. In contrast, the
valence-shell spin polarization depends strongly on the electronic
structure of the system. Particularly large valence-shell spin
polarization contributions to both isotropic and dipolar coupling
constants are found for systems in which the SOMO overlaps
significantly with certain high-lying doubly occupied valence
orbitals. These are the same cases in which our previous study11

found dramatic spin contamination effects to plague unrestricted
Kohn-Sham calculations with hybrid functionals. In addition
to providing some basic insight into the mechanisms of spin
polarization in transition metal systems, the results of the present
work may also be used to pinpoint the weaknesses of certain
theoretical approaches for the calculation of hyperfine couplings
and thus hopefully also to develop improved methods.

In contrast to the assumptions implicit in many qualitative2

and quantitative44,45schemes in current use by experimentalists,
both core- and valence-shell spin polarization may significantly
contribute to transition metal dipolar coupling constants.
Moreover, for TiF3 and MnO3, we have identified an interesting
3d/4s rehybridization of the SOMO upon including spin

(43) These<S2> values pertain to the noninteracting reference system
rather than to the real system. Such data are nevertheless expected to give
a reasonable and useful representation for the real system as well (see,
e.g.: Baker, J.; Scheiner, A.; Andzelm, J.Chem. Phys. Lett.1993, 216,
380).

(44) Varberg, T. D., Field, R. W., Merer, A. J.J. Chem. Phys.1991, 95,
1563.

(45) Balfour, W. J., Merer, A. J., Niki, H.J. Chem. Phys.1993, 99,
3288.
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polarization. These features complicate the extraction of spin
densities and orbital character from experimentalAdip values.
Explicit quantum chemical analyses are thus to be preferred
instead.
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